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In this paper we present a comparative study of spontaneous emission and spin-lattice re-
laxation at zero temperature. In particular, we study the time evolution of the density matrix
for two simple models as determined from an analysis of the Prigogine-Résibois master
equation. The first model treated is that of the Wigner-Weisskopf atom in a three-dimension-
al radiation field; the second model is that of a single, effective spin in interaction with the
phonon modes of a three-dimensional lattice. The divergence which arises in the solution of
the master equation for the first model is avoided using a trequency cutoff. A frequency
cutoff in the second model is imposed by the upper bound of the spectrum of modes in
the crystal, and this fact manifests itself when one integrates over the first Brillouin
zone only. From a detailed numerical study of the analytic results obtained in solving
the master equation, we find that for both models the relaxation to equilibrium is character-
ized, in part, by a sequence of slowly damped oscillations. This result seems to be in agree-
ment with the observation made by Zwanzig, namely, that exponential decay in time seems
not to be universal, and may, in fact, be hidden behind some other kind of time dependence.
The numerical study also reveals, however, that the nonexponential modes of decay can be
quantitatively different in magnitude and qualitatively different in structure for atomic versus
spin systems. Finally, based on the solution obtained for the spin problem, an estimate is
made of the relaxation time for cerium ethyl sulfate, and this estimate is found to be consis-
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tent with experiment.

I. INTRODUCTION

The possible importance of nonexponential decay
in the evolution to equilibrium of systems interact-
ing with many degrees of freedom was brought up in
an article of Zwanzig in 1960.' From an analy-
sis of an equation similar in structure to what is
now usually referred to as the Prigogine-Résibois
master equation,? he pointed out that exponential
decay in time may not be universal and indeed may
be hidden behind some other kind of time depen-
dence. It was in the attempt to clarify certain
aspects of this problem, that the authors undertook
a rather detailed investigation of a simple model,
that of a two-level atom in interaction with a radia-
tion field.® Although a rich variety of new problems
has sprung from our initial investigation of this
simple model, %5 we have felt it worthwhile to re-
turn to the problem raised by Zwanzig, cited above,
for at least two reasons. First of all, one might
reasonably ask whether nonexponential behavior is
a general property of the time evolution of all sys-
tems, or whether this behavior is an artifact of the
particular models which have been studied to date.
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Second, one might question whether the nonexpo-
nential behavior exhibited by the solution of the
master equation for the particular model studied
in Ref. 3 was a necessary consequence of the as-
sumptions used in solving this equation, and in
particular, the assumption which was employed to
avoid the ultraviolet divergence. It is our objec-
tive in this paper to address ourselves to these
questions.

We begin our study by reconsidering the Wigner-
Weisskopf atom in interaction with a radiation
field. Various features of this model have been
investigated by the authors, and the present paper
represents a departure from this earlier work in
at least two ways. First of all, the radiation field
treated here is three dimensional, whereas the field
considered in Ref. 3 was assumed one dimensional.
Second, the divergences which arise in the solution
of the master equation for this model were handled
earlier using the resonant-% approximation, where-
as the results reported in this study were obtained
using a frequency cutoff. Apart from displaying the
role of the approximation used to avoid the ultra-
violet divergence, this latter approximation was
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introduced because of the very natural way in which
a frequency cutoff arises in treating the second
model studied in this paper. Since it was our de-
sire to compare, insofar as possible, the temporal
behavior of both models within the same framework
of approximations, a frequency cutoff was intro-
duced in the solution of the master equations for both
models. Finally, we note that the two-level atom
is assumed to be in its excited state initially, with
all modes of the radiation field de-excited, so that,
in fact, the problem being considered here is that
of spontaneous emission. This investigation dif-
fers from previous treatments on spontaneous
emission®!? since it is our intention here to study
explicitly the behavior of the quantum-statistical
system in the thermodynamic limit.

The second model studied in this paper is that of
two, closely separated energy levels, treated as
an effective spin, in interaction with the phonon
modes of a crystal. This effective spin is assumed
to be in its excited state initially, and all the pho-
non modes of the crystal are assumed to be de-ex-
cited. The investigation of the temporal evolution
of this system corresponds, then, to the study of
spin-lattice relaxation at zero temperature, a
problem which, to the best of our knowledge, has
never been treated by the methods of nonequilibrium
statistical mechanics starting from the master
equation. The lattice is assumed to be three di-
mensional, and in solving the master equation, we
use the cutoff characteristic of the Debye-sphere
approximation to the first Brillouin zone.

In light of the essential role played by the Hamil-
tonian in investigations based on the Prigogine-
Résibois master equation, rather detailed discus-
sions accompany the derivation of the second-
quantized Hamiltonians used to define each model.
In Sec. II the Hamiltonian for the Wigner-Weisskopf
atom in interaction with a three-dimensional radia-
tion field is developed, and in Sec. II the solution
of the master equation for this problem is obtained
using a frequency cutoff. The relevance of these
results to those obtained in earlier work is noted.
In Sec. IV, Sears’s development!® of a second-
quantized Hamiltonian describing spin-lattice inter-
actions (in the sense used above) is reviewed, and
the specialization of this Hamiltonian to the case of
a single, effective spin is made, In Sec.V, the
solution of the master equation is obtained, again
using a frequency cutoff. Finally, in Sec. V, the
results of several numerical calculations are pre-
sented, which allow both a qualitative and quantita-
tive comparison of the two models. Differences
and similarities between the atomic and spin sys-
tems are noted, and the importance of nonexpo-
nential modes of decay in each case is emphasized.
Finally, the parameters which appear in the solu-
tion of the master equation for the spin problem are
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estimated for cerium ethyl sulfate from known ex-
perimental data, and an estimate of the relaxation
time for this compound is given.

II. WIGNER-WEISSKOPF ATOM IN A THREE-DIMENSIONAL
FIELD

The Wigner-Weisskopf model consists of a two-
level fermion and a massless boson field in inter-
action. The term in the Hamiltonian for the bosons
is chosen as for a set of harmonic oscillators in
the second-quantization notation:

HbOS = Z)h [}éh—wx(a{ah"' 1)] . (1)

Here X labels the possible modes of oscillation and
w, is the corresponding frequency. The creation
and destruction operators af and a,, respectively,
are defined by their matrix elements in the occupa-
tion-number representation:

(”xl a;.l my)= [2("x+ 1)]”2 ﬁxr(mx I % 1), (2a)

(myallny) =200+ D]Y265 (my -, - 1), (2b)

where a state |#,) is the state with n, (n=0, 1, 2,
...) photons in the Ath mode. The §**(---) is the
Kronecker &.

For the fermion, there are two quantum states
which may be written |1) and 12). Then, if €, is
the energy of /1) and ¢, that of |2), the fermion
term in the Hamiltonian is

Hyor=€ a0t + €507, (3)
where the operators a and o' are

a=|1)¢2], (4a)

at=|2) 1] .
It is readily checked that

(4b)

[0" aT]+= 1.

For the interaction between the fermion and the
mode A, we choose simply

Vy=hlata, + haal +glatal + ghaa, , (5)

where the coefficients 4 and gl must be the com-
plex conjugates of %, and g,, respectively, to en-
sure hermiticity. The full Hamiltonian is then

H=e a0’ + e;ata+ 20, [3w,(ala, +1)]

+ 2 [mata, + hadl+glatal + gyaa,)] . (8)

For the particular choice of initial condition that is
taken in this study and for weak coupling in the
thermodynamic limit, it will be seen that terms
proportional to g} and g, do not play a role in de-
termining the time evolution of the system. The
matrix elements of this Hamiltonian are to be taken
between states of the system given by
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|i; {”x}>= |1>EA |nx> ’

with ¢=1, 2 and with »,=0, 1, 2, ... for each mode
.

1t still remains to choose %, and g, so as to spe-
cify completely the problem. This we shall do by
making the model resemble as closely as possible
the situation of an electron in an atom interacting
with a field of electromagnetic radiation, here three
dimensional. A pure radiation field can be charac-
terized by the vector potential satisfying the wave
equation,

>t

—or 92
V2A - =0 (7a)

0(\" -
%

in free space, and the gauge condition,
divA=0 . (Tb)

This has to be solved with periodic boundary condi-
tions in a cuboid of sides L,, L,, L;. Accordingly,
we write

A=Z\[0: (t)e'® X &, 4 gl (DB &, ],
with
2

9
ﬁ-& + cakﬁqﬁ 0,

where €, is the polarization vector, orthogonal to
Eh by the gauge condition. For periodicity, we
need

3 _<§_1_r_ Mags 2% tryy 2L )
'y Ll A Lz V) LS )
the #’s being integers.

The energy of the radiation field inside the box
is given by the general expression

(1/87) [ (E*+H)dX ,
with

-~ 10A = -

E——c R H=curlA .

A simple but lengthy calculation (see, for example,
Ref. 14) yields the result

energy = Eqrectric + Emaaetic

L,L,L
=Tige ? R (a2ak + alan)

L,L,L
""‘ls_;_a )‘Eki(thx*‘l;&h) .

Now we know that in the second-quantization repre-
sentation

1473

H=1Ynw,(aal+ala,) ,

where this summation counts the two polarizations
separately. Accordingly, we identify

(,n,hwl)llz

=L (r.7.7.)i72
[/ kL(LleLS) a.

and this completes the expression of A in terms of
the second-quantization operators a,.

As regards the interaction, since the Hamilto-
nian for a particle of charge ¢, mass m in a field
with vector potential Ais

H=(1/2m) (p-eh/c)?,

where p is the momentum operator, we may, fg_r
weak fields, consider only the linear terms in A
in this expression. Thus we take as the interaction

H1=_ (e/mC)K‘ 5

=- (e/mc)z;, (QAe‘h' Xy qu-’E)'. i)-éx‘ 5 .
()

When matrix elements of H} are taken, using the
dipole approximation

e ¥=q
there results

; 1/2
1 o 1y lexw Thic 1/2
( ) nxl 1|2, ny, 1) c ’xl,LyLs (27'11) ,

where we have put

(1]3,-pl|2)y=-imwy .
Here, w is the resonant frequency between states
|1)and 12) and x is some quantity with dimensions
of length.
Comparison with the matrix element
(1, ”).l Hﬂ 2,m=1)=h, <”A| a{lnx‘ 1)= hx(znx)”z

leads to the identification

7 1/2
weievo (i)
, ©)
|n, |2 =T 72xP WP
MOk LyL,Ly °

where o' is the fine-structure constant of electro-
dynamics, e?/fic. Later expressions will be sim-
plified if a redefinition of the coupling parameter
is made at this point, namely,

a=a x2w?/c® . (10)
We then have that
2
lhxlz—“—"ﬁac——— (11)

TR LyL,Ly *
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In a similar fashion, evaluation of the matrix ele-
ment

1, n,t'Hﬂ 2,1, +1)
leads to

P

" Tk LLyL, (12)

In this equation, g is a dimensionless coupling con-
stant, In the particular case studied here, it can
be shown that a=8; however, this identification is
not necessary in what follows, or, in fact, even
true in the general case. Accordingly we shall re-
tain the explicit use of g in Eq. (12). This com-
pletes the specification of the Hamiltonian for the
Wigner-Weisskopf atom in a three-dimensional
radiation field.
III. SOLUTION OF MASTER EQUATION FOR
WIGNER-WEISSKOPF ATOM

Having specified the Hamiltonian for the model
of the Wigner-Weisskopf atom in a three-dimen-
sional radiation field, we now study the evolution
of the system to quantum-statistical equilibrium.
For the readers convenience, we begin by sum-
marizing those aspects of the work presented in
Ref. 3 (hereafter referred to as I) which will be
used in the following development. For a system
whose Hamiltonian can be separated into unper-
turbed and perturbed parts,

H=HD+H1 3

the Liouville~von Neumann equation has the itera-
tive solution for the diagonal elements of the den-
sity matrix:

oupo, -5 [ (| et
m =

Tm

X [Hl! e-i”o(tl-tz)/h[Hl, o

H.. o~ iHotm/n siHgtm/n]
Xy, e p(0)e ] ]

x etHo(t1-ta) /N ] Gikg(t - £1) /1 ]]N)
H

(13)
where

tma1-

L =1/Gny) [an [taty [Patge [ b

It is convenient to introduce the (v, N) notation
(n|alm)=4,0),

where v=n—m, N=%(#+m), and make the following
definitions:

Wl )| vy =1 Hy e NI™* =™ Hy,, (N,
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where

TI"f(N) =f(N+%V) )
(wle@®|v)=(N+iv|e /" |N+1v)
X (N=3p|e tHot/"|N=Lp) .

One may make, therefore, a separation of terms
in Eq. (13) to obtain

8,po(N, )= [ * dr e (Mool £ = 1)+ D, {p, (N, 0} ,
(14)

where

e(r)= ('S f ©3e,(NG(E—1,)- -~
F=007,

X G(ty. 1)}(31(N)|0>irr (15)

and

o, {p, (N, O] = (i) i}o 2 f (O[3 (N)G(t = £)+ - -

Tn

X 50, (N)G () | ¥ )10, (N, 0) . (16)

Here €(7) is referred to as the collision operator
and (¢, {p,(N, 0)}) the destruction operator. The
suffix “irr” is short for “irreducible,” and has the
sense that the intermediate v variables in the ex-
pansion of an operator product may not assume the
value zero. Equation (14) is a convenient statement
of the Prigogine-Résibois master equation. For
the initial condition for spontaneous emission,

p,(N, 0) = 65 (v) 65 (N,— 2) I, 6% (,) , (")

one finds that the destruction term can be set rig-
orously equal to zero. Laplace transformation of
Eq. (14) gives

poN, £)= (1/27) [[ dz e @(2) + i2) ™ po(N, 0) ,

where C is a contour in the z plane parallel to the
real axis and above all singularities of the inte-
grand, and where

W)= [ ate* e . (18)

The calculation of ¥(z) is straightforward but
lengthy. We demonstrate explicitly in the Appendix
that terms proportional to g, and g} in the Hamilto-
nian do not contribute to the time evolution of the
system for the infinite-system limit with weak cou-
pling. We therefore drop these terms in our three-
dimensional Hamiltonian and recognize that the
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fermion and boson terms now become structually
the same as the corresponding terms of the one-
dimensional Hamiltonian, Eq. (6) of I [hereafter

we use the notation Eq. (I 6), etc.]. The expres-
sion for (z) for the three-dimensional model is
identical to Eq. (I.34). Choosing N,=2 and N,=0
for all modes u, and then considering the case of

an inifinite system for which the summation over the
modes X can be replaced by integration over the
wave number &,

(87%/L,L,Lg) 2\~ 2 [ dk

(keeping in mind that there are two polarizations),
one obtains in the limit L -~ « the result

- 1 dact k| -
p(ﬁl,z)=i—z (1— - f dk—g—'—‘—‘-‘—"z(c[kl )) .
° (19)
Here, p is the Laplace transform of the density
operator

p(r)= (1 +4_a>e-41'-160z1'/1r
.
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Bl 2)= [ dte ol 1) .

We note that the three-dimensional coupling param-
eter a has been defined in such a way that the solu-
tion to the master equation has the same form in
both one- and three-dimensional cases.

As it stands, the integral appearing in Eq. (19)
is divergent. To avoid the (ultraviolet) divergence,
the expedient was chosen in Ref. 3 of replacing
the factor |%! in the coupling constant |%,12 by its
resonant value E/c. The expression for the diagon-
al element of the density matrix was then obtained
by taking the inverse Laplace transform of pa, z).
Since Eq. (19) above has the same form as Eq.

(1. 41), the use of the resonant-% approximation in
the three-dimensional case leads to the same result
as obtained earlier in the one-dimensional case,
namely, Eq. (I. 62). For convenience, this equa-
tion is reproduced below:

27

4cos(-r/£)+2[.§' +(©2/m)Inl (& - @)/ (t +a)|]sin(r/£)

1 d£(12cos(7/g)+z[g-1+(z/fr)lnl(& a)/(&+a)l]sin(r/£)
f 36£2+ [1+(2t/m)Inl (£ - @)/ (£ + ) ?

where we have introduced the independent dimen-
sionless variables,

t=aE/x, (21)

where x is the real part of the complex variable z.
Having examined the resonant-% approximation,
we wish to investigate in the remainder of this sec-

tion the possibility of avoiding the ultraviolet di-
vergence by establishing a finite upper bound on the
integral appearing in Eq. (19). The use of such a
bound amounts to imposing a cutoff (denoted by u)
on the possible values of 2. If one integrates Eq.
(19) directly and then replaces all divergent terms
in the resultant expression by the appropriate fac-
tor involving u, the result is

1 zz—(cu—E)z> E [ E-z ;
2¢% ln< 22 - E° T 2%z m(E+z >+ 27”] :

(22)

T=aFEl,

Hence, the expression for p(N, z) is

- . 2aiz | (22=(cu-E)?
p(N,z)=[zz+ - ln< zz—’;‘z )

4241+ @2t/mInl (& - a)/(E+a)I

) , @)

. - -1
+2eEL m(E z) - 4aE] (23)
T E+z
The diagonal element of the density matrix is found
by taking the inverse Laplace transform of p(91, z).
Thus,
1 ai +»
Po(dt, 2) = - P dz

af-

-{:t ~(fﬂ Z)

Z PLANE

~

E Cu-E

L~

FIG. 1. Contour used in evaluating Eqs. (25) and (44).
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2%~ (cu-E)p?
X1n< 2 - B2 >+

1 oi+e 2aiz
=-5 dz e %t iz 45—
T A T

2aEi . (E-z -1
m ln(E+z>_4aE] ’

(24)

where the integration is to be performed along a
path slightly above and parallel to the real axis.

It is seen that the integrand is not analytic over the
entire z plane, but has branch points at

z=%E, +(cu—-E).

One can evaluate the integral using Cauchy’s theo-
rem by closing the contour in the lower half-plane,
but in such a way that the above singularities are
avoided. Our choice of contour is given in Fig. 1.
We look for the poles of the integrand by separating

J
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the denominator into real and imaginary parts and
then setting each part equal to zero. One finds that
there is a pole in the z plane at

2=—4qEi-8E 2[1-1n<0“"E>Jz‘.
T E

The residue of the integrand at this pole is

; - -1
e'm{iw@—%[— 1 +1n<———cu E>]}
T E

The large semicircle and the small indentations
around the branch points contribute negligibly, so
that the integral is equal to the sum of 27i times the
residue at the pole, plus the contributions from

the eight line segments parallel to the branch cuts.
These contributions due to the branch cuts are
easily evaluated, and one obtains as the final ex-
pression for the diagonal element of the density
matrix the following result:

p(r)= exp{[ -1 (1-m ) ’} {1 < [m(*57)- 1}}-1

@B / (cu- E)

1 [ d§12005(-r/£ +2Q(£) sin(r/£) L1
0

T2r

£°[36+ Q(¢ )] Ton

aE/(cu-E)
0

(12 4a/t)cos(t/&)+2Q(¢) sm(f/&)

[+
1 f
27 QE /(cu- E)

(2a - 6£)° + £2Q(¢)?

4 cos(t/&)+2Q(£) sin(r/&)
4+ Q)7

(4 +4a/t) cos(1/£) +2Q(¢) sin(r/£)
(2a +2£)% + £2Q()? ’

(25)

e
27" aE/ (cn- E)

where we have introduced the dimensionless variables 7 and £ defined earlier, and where

Q(£)=-2—+

It is to be noted that when the ratio (cu — E)/E is
set equal to unity, Eq. (25) collapses into Eq. (20).
That is, if one replaces the factor u by twice the
resonant value of |%|, namely 2E/c, the results
obtained using the resonant-% approximation and
those obtained using the frequency-cutoff approxi-
mation are identical. In view of this relationship,
the calculations presented in I can be compared
with those derived from a numerical study of Eq.
(25), and hence some estimate can be obtained as
to the sensitivity of the results to the particular
choice of approximation used to avoid the ultraviolet
divergence in Eq. (19). The presentation of the
numerical results and the discussion will be de-
ferred until Sec. VI.

IV. A MODEL HAMILTONIAN FOR SPIN-LATTICE
INTERACTIONS

The model of the Wigner-Weisskopf atom is, in

2a | |0®- & [(cp - E)/EP
ﬂ,g aa_ 2

2
+2
s

m [2=£

a+é (26)

—

essence, that of a two-level system in interaction
with a (radiation) field. It is interesting to see if
the methods developed in Sec. III are useful in
studying another well-known two-level model, that
of a single spin in interaction with the phonon modes
of a harmonic lattice. Such a system is describa-
ble by a Hamiltonian having the following form:

H=H,+Hg+Hg, .

There is a considerable similarity between the spin-
lattice Hamiltonian and the Wigner-Weisskopf
Hamiltonian. The structure of the “field” term

in both representations is formally the same, since
a lattice may be characterized in the harmonic ap-
proximation as a collection of harmonic oscillators.
Thus,

Hy =22 47w, (ala, +1) , (27

where a} and a, are the phonon creation and destruc-
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tion operators and X designates the phonon modes.
For a single spin-} there are two spin states ac-
cessible to the system, |1) and |2) having ener-
gies ¢; and €,, respectively. We write the spin
Hamiltonian in second-quantized form as

Hg=c,aa’+ea'a, (28)
where
a=|1)¢2|, a'=|2)(1]. (29)

It is evident that @ and a' obey the usual fermion
commutation relation.

Spin-lattice relaxation in ionic solids has been
studied for several decades, the earliest contribu-
tions in this field being due to Waller, Kronig, and

Van Vleck.'® In ionic solids, spin-lattice transitions

are caused predominantly by phonon modulation of
the crystalline electric field, and involve both spin-
orbit and orbit-lattice couplings. Taking all of
these effects into account in a rigorous way in the
interaction term of the Hamiltonian leads, as one
might expect, to a rather complicated expression.
Recently, however, several workers have shown
that many of the general features of spin-lattice
systems can be understood by using the less de-
tailed dynamical spin-lattice formalism,!¢-18
Sears,!® in particular, has suggested a spin-lattice
interaction term which was used in a study of the
heat capacity of cerium ethyl sulfate. Other prop-
erties of spin-lattice systems which have been
studied using the Sears type of interaction term
include Schottky anomalies and excitation life-
times, 1920

Sears assumes that for low enough temperatures
only the two lowest electronic energy levels are
appreciably populated, and hence one can treat the
electronic degrees of freedom of each ion as an
effective spin. The energy of interaction between
an effective spin and the lattice is assumed to be
directly proportional to the displacements of the
ion from its equilibrium position. Thus,

N
He=2 U SioAas(Ry = Ryuyg . (30)
4,i=1 a,8

In this equation, N is the number of effective spins
in the system, « and g refer to the Cartesian in-
dices x, y, and z, and the S;, are operators, given
below, which Sears defines in terms of the spin
creation and destruction operators. The S;, satis-

fy the commutation relations for angular momentum.

Finally, ﬁ, - ﬁ, is the relative displacement vector,
u;s is the displacement from its equilibrium posi-
tion of the jth ion in the g direction, and A, is an
unspecified constant. It is also assumed that the
spins are sufficiently far apart that spin-spin inter-
actions are negligible.

In his development, the requirement of time-re-
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versal invariance is used by Sears to eliminate
various terms in the interaction expression. More
precisely, since time reversal inverts a spin and
since by definition, using Sears’s notation,

a=1)¢l, (31a)

a'=12)1], (31b)
and

sixzé(al +aj), (32a)

Sw = %(ai - a;) ) <32b)

Sie =% - a{a, s (32¢)

it is evident that S;, and S;,, but not S,,, are time-
reversal invariant. Since Hg must be invariant,
Sears sets A,;=0. Note also that S;, does not rep-
resent a coupling between the spin and lattice, in
that it cannot bring about transitions from one spin
state to the other. Therefore, Sears also sets

A, equal to zero. The interaction term thus as-
sumes the form

1 N
HSL=§ Z}

7 (a, + a) AR, - B))uyg (33)
i,5=1 B

The standard transformation to normal coordinates
is performed to yield

N
Hg =N-Y233 73 (a, +a})

i=1 k,p
x{Ape't BC, + ALe T R L), (34)
where
no\t/2 X P
el () 5 e
K k 2mwy, i=1 8

x %Axﬁ(ﬁi - ﬁi)ekpﬂ . (35)

Here m denotes the mass of the atom, and e,,; de-
notes the unit polarization vector for phonons of
type (¢, p). Upon considering the matrix elements
of Hyg,, where in the long-wavelength limit

Wpp = vk )
we find that the A4,, can be written
Ay = e(PPwauk/12)H2 (36)

In this expression, v is the velocity of sound, € re-
fers to a dimensionless spin-lattice coupling pa-
rameter, and w, is the frequency separation of the
two lowest electronic energy levels of the ion.
Having reviewed the assumptions inherent in the
Sears formulation, it is a simple matter to rewrite
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the interaction term using the notation of the Wig-
ner-Weisskopf model studied earlier. We set

€ =—3lwy, €=+3hw, . (87)

For simplicity, we limit the number of spins in the
system to one; for certain choices of the initial
condition, no generality is lost in this restriction.
If only energy-conserving terms are retained in
the interaction Hamiltonian, it is found that the full
spin-lattice Hamiltonian can be written in the form,

H=23, tiiw,(ala, +1) + e aa + ;0

+ 5 €(BPwow,/12N)1/2 (61 F R ot g 4 1 B gty |
(38)

In order to simplify later expressions, it is con-
venient to define at this point a new coupling pa-
rameter o, where

0 =e?E%/24ndy® . (39)

Here, E=uw, is the frequency difference of the en-
ergy levels, and d is the density of lattice sites,
that is, N/L,L,L;. In order to demonstrate further
the relationship between the Wigner-Weisskopf
Hamiltonian and the one presently under study, one
can identify constants %, and !, where

2_ 07210t |
N FLIL, (40)
This completes the specification of the Hamiltonian
for a spin in interaction with the phonon modes of
a lattice.

V. SOLUTION OF MASTER EQUATION FOR SPIN-LATTICE
PROBLEM

The analysis of the Wigner-Weisskopf atom can
be used as a guide in solving the master equation
for systems characterized by spin-lattice interac-
tions. The calculation of ¥(z), the Laplace trans-
form of the creation operator, is straightforward
and yields the same result as that given in Eq.

(1. 34). As initial conditions, we specify that the
|

KUTZ, DAVIDSON, AND KOZAK 4

spin is in the excited state, and that all phonon
modes are de-excited; that is, the lattice is at the
absolute zero of temperature. These requirements
correspond to the same initial conditions as those
used in the treatment of the Wigner-Weisskopf
atom. We choose

N,=2, N,=0,

for all modes u. In the spin-lattice Hamiltonian,
the summation over X refers to a sum over all
modes of vibration accessible to the system, name-
ly, those modes characterized by wave vectors
which lie in the first Brillouin zone. We approxi-
mate the first Brillouin zone by the Debye sphere.
In this approximation, one replaces summations
over the modes X by integrals over the wave vec-
tor &; that is, we replace

(87%/LyLyLy) Dy~ 4n [ K2k,

where p refers to the Debye cutoff for the wave
vector k. Using Eq. (40) for |%,12, and recognizing
that in the limit of an infinite system,

bl(A, Z)=0 ’

we find that

3 1 400t (*  Rdr Y
P(N,Z)—Z <1—7TE§' m) . (41)

In order to provide a basis for comparison with
the results obtained earlier, the integral appearing
in Eq. (41) was evaluated using the technique sug-
gested in the study of the Wigner-Weisskopf atom.
That is, we assume that the cutoff is large enough
so that terms proportional to reciprocal powers of
p vanish, but small enough so that terms propor-
tional to u or powers of u do not diverge. With
this prescription, we find Eq. (41) becomes

u_g___—_——gksdk __M _2Eu 3E:+2° 22~ (vp-EF  3EZ+E? [ <E-z> 2] 42
z°— (vk - E) —-2_1-)-2-_ 208 In 22 - E° 2%z E+2z +emi| . (42)

0

Hence, we have that

ai+ o

1
poN, B)=-5- Er | En

ai-

2. . . 2 .3 2 _ - 2
dze""{izq-zw iz  8ovpiz  6oizE® +20iz 1n<z (vp - E) ) .

Ern z% - E?

60422 + 20E? E-z o
ot [m(E =2 )+ Zm]} )

Cauchy’s theorem can be used to evaluate this integral, and, in fact, one can choose the same contour as
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the one given in Fig. 1. The integrand of Eq. (43) has a pole at

2,2
Z=- 4Eoi+[—-——-8vEu + 8204

The residue of the integrand at this pole is

e izt [1,

2,2 .
+20v ué +8avuz
TE TE

v - FE
0 +48 ln(—-——E ):I

+12% 1n<———”“ = E) -
T

a2

m

THeee

toi)”

E T

Adding together the contribution from the cuts and this pole, we have the result

_exp[-4+(BR?+32R+48 InR)o/n+---]r 1

plr)= 1+ (20R?+80R - 40 + 120 InR)/7

1

o/®
L

ealt)?+ q(¢)7]

In this expression, we have used the definitions,

£=0E/x, (452)
r=0Et, (45b)
R=vu/E, (45¢)
®R=(vu-E)/E . (45d)
Also, we have introduced
a(t)=60%/E*+2, (46a)
b(£)=60/¢ - 2(0/£)°, (46b)
q() =% (1 +2—(:T£2- +§—;—:—§) +% In Oz—fZ‘Rzl
+2'(—E‘2 In zT—;‘ (46c)

Calculations based on Eq. (44) will be presented in
See. VI.

VI. DISCUSSION

In this section, we present the results of numeri-
cal calculations based on Eqs. (25) and (44), and
then attempt to analyze these results. In Figs. 2-
6 we study the effect of changing the coupling con-
stant « and the ratio (cu — E)/E in the expression
for the time evolution of the diagonal element of the
density matrix for the Wigner-Weisskopf atom. In
these figures, the solid line refers to the purely
exponential term in Eq. (25), while the dashed line
refers to the nonexponential contributions in this
equation. Then, in Figs. 7-9 we study the effects
of changing the coupling constant o and the ratio

T2

a/®
[
0

2a(€) cos(r/&) - 2q(¢) sin(r/E) 1
27

1
27
o

6a(t) cos(r/£) + 2¢(¢) sin(r/£)
£%[9a(£)? + q(£)]

2[b(£) - 3a(£)] cos(r/&) — 2¢(£) sin(r/&)
£7([6(2) - 3a(t) F+ q(¢ )7}

o/®
[

f"’“ g 2208 + alE)] cos(r/E) + 29(¢) sin(r/ &)
E{bE) +al)F+ (&)%)

. (44)

I

(vu - E)/E in the spin problem. Here again, in
these figures, the solid line refers to the purely
exponential term, and the dashed line refers to the
nonexponential contributions in the solution, Eq. (44).

For the two-level atom in interaction with a
three-dimensional radiation field, we find that for
fixed ratio, as the coupling constant « increases,
the number of peaks per unit interval of time 7, or
what might be characterized as a frequency of
peaks, decreases while the amplitude of correspond-
ing peaks increases. On the other hand, for fixed
coupling constant, as the ratio (cu — E)/E increas-
es, the frequency of peaks increases while the
amplitude of corresponding peaks decreases.

For the case of a single spin in interaction with

020

olo

plr)

000

-0.l0
0.0

FIG. 2. A study of Eq. (25) with o =0.1 and (cp— E)/E
4. The solid line refers to the purely exponential term,
and the dashed line refers to the nonexponential contribu-
tions.
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0.20
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-0.20f -

1 L L L 1
0.0 20 40
T

FIG. 3. A study of Eq. (25) with ¢ =0.2 and (cu— E)/E
=%, The solid line refers to the purely exponential term,
and the dashed line refers to the nonexponential contri-
butions.

the phonon modes of a three-dimensional lattice,
the results obtained are slightly different. For
fixe/d ratio (vu - E)/E, as the coupling constant ¢
increases, the frequency of peaks decreases. This
is in agreement with the behavior observed in the
case of the two-level atom. However, in the spin
problem, it is found that for fixed ratio, the ampli-
tude of corresponding peaks decreases as the cou-
pling constant increases, a behavior which is in
marked contrast to that observed in the case of the
two-level atom. Second, we notice that for fixed
coupling constant o, as the ratio increases, the
frequency of peaks increases, .in accord with the
results for the two-level atom. On the other hand,
the amplitude does not appear to be very sensitive
to increasing values of the ratio (vu — E)/E for
fixed 0. The sensitivity of the amplitude under the
same variation has been noted in the preceding

040}

0.20

Pl

| R ~yge spup——

0.00

-0.20 1

00 20 4.0

FIG. 4. A study of Eq. (25) with ¢ =0.4 and (cu—E)/E
=%. The solid line refers to the purely exponential term,
and tke dashed line refers to the nonexponential contribu-
tions.

v

0.0

pl0)

0.00

-0I10 1

! " s L L

0.0 20 40
T

FIG. 5. A study of Eq. (25) with @ =0.2 and (cp— E)/E
=1. The solid line refers to the purely exponential term,
and the dashed line refers to the nonexponential contri-
butions.

paragraph for the two-level atom.

Apart from the differences and similarities ob-
served in the frequency and amplitude of peaks, it
is worth noting that whereas the curves generated
from Eq. (25) are continuous and smooth for the
most part, the curves generated from Eq. (44) are
rather “jagged” for certain values of the coupling
constant o and ratio (vi — E)/E. In particular,
compare the behavior exhibited in Figs. 2 and 8,
and Figs. 3 and 9. It is important to determine
whether this apparent difference is real, or whether
the jagged profiles observed in Figs. 7 and 8 are
an artifact of the numerical calculation. To study
this question, we performed the numerical integra-
tions for a variety of grid spacings, in double pre-
cision, and finally using an entirely independent in-
tegration procedure (the BEEFM, INTEG 1 pack-
age). The results of these various tests revealed

[ed]e] o 7

>

plx)

000

-0l0[ ]

0.0 2.0 40

T

FIG. 6. A study of Eq. (25) with ¢ =0.2 and (cu—E)/E
=2, The solid line refers to the purely exponential term,
and the dashed line refers to the nonexponential contribu-
tions.
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0.20

0.10

pT)

0.00

-0.10F -

0.0 20 40

FIG. 7. A study of Eq. (44) with ¢=0.1 and wp—E)/E
=%. The solid line refers to the purely exponential term,
and the dashed line refers to the nonexponential contribu-
tions.

that the behavior exhibited in Figs. 7 and 8 is not
an artifact of the integration routine used in our
calculations.

With the numerical results at hand, we now turn
to a discussion of the two models studied in this
paper. As indicated in the Introduction, one of our
objectives here was to determine whether the non-
exponential behavior predicted by Zwanzig and dem-
onstrated in the earlier work on the Wigner-Weiss-
kopf atom was a consequence of the particular ap-
proximation used to avoid the ultraviolet diverg-
ence. We have investigated this possibility by us-
ing a different approximation scheme to avoid this
divergence, namely, that of imposing a frequency
cutoff. We have found that nonexponential behavior
is still manifest in the solution of the master equa-
tion for the two-level atom when finite values of
the cutoff are chosen. We observe, however, that

0.20

0.10

plr)

0.00

-0.10F N

0.0 20 40

FIG. 8. A study of Eq. (44) with 0=0.1 and (wu— E)/E
=3%. The solid line refers to the purely exponential term,
and the dashed line refers to the nonexponential contribu-
tions.
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020 T T T T T

0.10

plr)
000 < —<
N N~
-0.10 .
L L . 1 i
0.0 20 40

FIG. 9. Astudyof Eq. (44) with ¢=0.2 and (wp—E)/E
=%. The solid line refers to the purely exponential term,
and the dashed line refers to the nonexponential contribu-
tions.

for large values of the cutoff the amplitude of the
nonexponential relaxation is smaller and the rate
of oscillation faster, and, in fact, for extremely
large values of the cutoff, the nonexponential be-
havior is negligibly small. It must be emphasized,
however, that for the two-level atomic system

the frequency cutoff cannot be regarded as a phys-
ical parameter, in the sense that a value of the
cutoff parameter can be determined by considering
some real system. The frequency cutoff for the
two-level spin system, on the other hand, arises
quite naturally, and to each particular system
there corresponds a definite Debye cutoff.

It was also our intention to determine whether
the appearance of nonexponential modes of decay
was due to the particular model studied, the two-
level atom, or whether nonexponential behavior
would emerge from the study of other models as
well. Therein lies the interest of the spin system
studied in this paper, since oscillations were ob-
served in the solution of Eq. (44) as well.

It is important to recognize that the sequence of
slowly damped oscillations which arises in the solu-
tion of the master equation for the two models
studied here may not be observable experimentally.
To investigate this point, as well as to test the rea-
sonableness of the model introduced here for spin-
lattice relaxation, we have estimated the relaxation
time of cerium ethyl sulfate using Eq. (44). This
estimate can be correlated with experiment since
the relaxation times for various rare-earth salts,
including 0. 2% cerium in lanthanum ethyl sulfate,
have been studied experimentally by Scott and
Jeffries.?! To begin, we recall the definition of o.
We choose as a value for v the velocity of sound
in the lattice 2%x10° cm/sec, the value used by
Scott and Jeffries. Sears in his study of the heat
capacity of cerium ethyl sulfate estimates the cou-
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pling parameter € to be 3. For simplicity, we shall
assume here that € does not change appreciably
when we have 0. 2% cerium ethyl sulfate in lantha-
num ethyl sulfate. For the difference in frequency
of the two lowest energy levels for cerium ethyl sul-
fate we choose 10! sec'.'®!® Finally, the density
of lattice sites can be estimated from the crystallo-
graphic data of Johnson and Meyer.?? For cerium
ethyl sulfate we obtain a density of 10'® cm™3, Us-
ing these estimates, we obtain a value of 10~* for

0. From the structure of Eq. (44) and on the basis

of the numerical work presented in Figs. 7-9, it
is reasonable to conclude that the dominant contri-
bution to p(7) will be given by the exponential term
in that equation. Furthermore, in view of the
small value of o the exponential term itself can be
approximated by

e-4¢TEt

If we define the relaxation time T to be
T=1/40E ,

then with the choice of o and € cited above, we esti-
mate the relaxation time of cerium ethyl sulfate to
be 10-® sec. Scott and Jeffries observe a relaxation
time of the order of 10~* sec in 0. 2% cerium ethyl
sulfate., From the dependence of the relaxation
time on temperature they conclude that the observed
relaxation is due to the Orbach and Raman mecha-
nisms. The estimate of T for the relaxation time
for the direct-process relaxation mechanism is con-
sistent with their observaticn, since at very low
temperatures the direct process is known to be
faster than either the Raman or Orbach processes.
In fact, for 1% praseodynium in lanthanum double
nitrate, a non-Kramers salt for which the direct
process can be distinguished from the Raman pro-
cess at low temperatures, one observes a relaxa-
tion time for the direct process of 10~ sec and for
the Raman process of 10 sec. Hence, at least for
i

po(NV, 0) =iza(N, z) +;1
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the spin problem a partial answer can be given to
the question raised earlier, namely, whether it
might be possible to observe experimentally the
sequence of slowly damped oscillations found in
solving the master equation. For, if one is pre-
pared to accept that the calculations presented
here, which refer to a model defined at zero tem-
perature, have some relevance to real systems
(and, in particular, to cerium ethyl sulfate at
~3°K), and if one agrees that the relaxation time
of the direct process is not faster than 10 sec,
then a direct experimental observation of nonexpo-
nential decay for this system is not precluded,
given the magnetic resonance equipment currently
available. Should it be possible to observe such
an effect, it would be fair to say that the underly-
ing mathematical structure of the Prigogine-Rési-
bois master equation provides a framework within
which the Zwanzig suggestion can be understood,
and this, in the view of the authors, assumes an
importance that cannot be overstressed.
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APPENDIX
We define

o(N, 2)= jﬂ"’ dte*tp(N, 1) .

Beginning with Eq. (14),
po@, 0) =[9(2) + iz]o(N, 2) ,

we retain terms proportional to g, and glin the
Hamiltonian, obtaining

{l hhfz—rTcl—k—l——-— [N, + )55 (N, = 2) (0(N, 2) = (N, = 1, Ny + 1, {N, }, 2)

+ NOEE (N, ~ 1) (0N, 2) = o (N, +1, Ny =1,{N,}, 2))]

W s

+ (N, +1)65° (N, = 1) (0(N, 2) = o (N, + 1, Ny + 1, {N, }, z))]} .

N5 (N, - 2) (o(N, 2)

—O(ND_ 1’ Nx" 1’ {Nu}: Z))

(47)

For the particular choice (Which we shall call 9) of N variables,

N,=2, N,=0,

for all modes u, this becomes
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1
2
= - .
1=4z0(, 2) E |7, G —EF [oln, 2) = o, 2)] (48)

For a second choice of N variables,

0=4z0(, z)+§;—§5 |h)'|2;2_——(zl—k—1—[—:i‘—)-z [o(n, z) -0, 2)]

x [o(x, z)= o3, 2, 1, 2)] +

For an infinite system we have

873/ L\LyLg) Dy~ 2 [ dk .

Keeping in mind the expressions for |%,1% and |g,|2
given in Sec. II, we proceed to the infinite-system
limit and neglect terms proportional to (L,L,Ls)™.
The first equation becomes

. dizac?
1=4iz0(m, 2) - . [ dk—z——m

x [o@, z) -0k, 2)] . (50)

The second equation becomes

» 41'2302[” kK
0=4zo(k, 2) - A dk 22— (ck' - E)?

x [o(k, 2) -0, &, k', 2)] . (51)

We note that this second equation does not contain
o(9, z) and merely links o(, z) to a new quantity
o, k, k', 2z) involving a state with the atom excited
and two photons present. Since the left-hand side
of this equation is zero, this is a homogeneous re-
lation between o(k, z) and o(, &, £/, z), and we have
a hierarchy of equations with higher terms being
given by the equations

. ’ 42’2862'[” " k'
= — —
0=4z0(:, &, &', 2) = dk Z—(ch —EF

X[o@, &, k', 2) -0k, k', k', 2)]  (52)

N,=1, N,=1, N,, =0, the equation becomes

z 2 1
pre) AT
* hz‘§X|g”| 2¢=(clk,| - E)

|2m17‘7)f [o(, 2) - olor, 21, 2)] . (49)
Y Py

ha |g,.
r
and

e

. 4izpc® (7, ,
0=izo(o0, k, &', k", z)—-—f—[ dk "Z — ok —E)

x [0,k k', k", 2) — ok, k', k', k', 2)] . (53)
It is clear that a solution to this hierarchy is
ok, 2)=0(, &, k', 2)=0(k, k', k', 2)
=o@, kb, k", R,

z)=+..=0,

With this solution for o(k, z) our first equation be-
comes

. 4izacz/
1=4z00, z) - _— dk (ck £ o@, z),

(54)

which is merely Eq. (19). Now the existence of

the operator [(z)+iz]"? requires that the hierarchy
of equations have only one solution.?® We find,
therefore, that for the specific initial condition cor-
responding to spontaneous emission and spin-lattice
relaxation at zero temperature, in weak coupling

in the thermodynamic 1imit, non-energy-conserv-
ing terms proportional to |g,|2 do not play a role

in the time evolution of the system.
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Using the simple Sawatzky model, we have made an evaluation of the “overlap” contributions
to the electric-field-gradient (EFG) components at the non-axially-symmetric Fe* site in

FeOCl.

The modifications to the EFG components calculated previously by lattice-sum methods

are considerable. For O% and CI polarizibility « values of 1.0 As’ it was possible both to
match the experimental asymmetry parameter 7 value of 0.32 and to get a Q(Fe®™) value of

0.19 b, close to the ferrous consensus.

Recently there appeared a determination of the
Fe’™ nuclear-quadrupole coupling parameters per-
tinent to the non-axially-symmetric Fe3* site in
FeOCL ! Unfortunately, the fit of a self-consistent
monopole=point-dipole lattice-sum electric-field-
gradient (EFG) calculation to these data was not
very satisfactory. The dipole contributions to the
EFG, for O* and Cl” polarizibilities @ varying over
the range 1-3 33, were at times comparable to the
monopole sums (cation polarizibility was neglected).
The only way that the EFG asymmetry parameter 7
could be properly fitted within the o range used was
to set ap=0c;=1. However, this led to a calculated
Q(Fe®™) of 0.33 b, which, in the light of recent
analyses, ? is probably much too large. We present
in this paper an evaluation, in this system, of the
EFG contributions due to the overlap distortion of
the Fe®* closed-shell orbitals by the ligands. Such
calculations have recently been made in a-Al,O4
and a-Fe,0, by Sawatzky and associates® and by
Sharma.* From their analyses in sapphire-type
geometries, these authors have obtained values for
Q(A1%") and Q(Fe®™) which agree very well with
other data. We use the more simple Sawatzky for-
mulation here,

Clearly, the non-axially-symmetric Fe®* site in
FeOCl provides a more searching test of theoretical
EFG calculations than the symmetric Fe®*site in
a-Fey,0g. Also, unlike a-Fe O3, the lattice-sum
calculations in FeOCl are relatively insensitive to
variations in crystallographic parameters.® How-
ever, as noted above, anion polarizibility enters
relatively prominently here. Before proceeding
further, we summarize the FeOCl M&ssbauer-ef-
fect results. The quadrupole splitting AE, was
found to be 0.916 +0. 001 mm/sec; the n value was
0.32+0.03; and the x, y, 2z principal axes of the
EFG were parallel to the crystallographic ¢, b, a
axes, respectively (c <a <b) with V,, negative.

In this system, Fe®*is octahedrally coordinated,
having as nearest neighbors two oxygen ions at
1. 964 A, another two oxygens at 2. 100 f&, and two
chlorines at 2.368 A. In calculating the overlap
integrals, we have noted the arguments of Sawatzky
and associates in assessing the relative magnitudes
of various contributions to the overlap. There-
fore, we consider here the overlap of the Fe* 2p
and 3p orbitals with (i) the oxygen 2p orbitals and
(ii) the chlorine 3p orbitals. The basic equation
for the EFG contribution (V,,), from each set & of 2



